

Data Analytics Course Syllabus

Module 1: Foundations of Data Analytics

- 1.1 Introduction to Data Analytics
 - Definition, scope, and significance of data analytics
 - Historical perspective and evolution of the field
 - Key components of the data analytics ecosystem
- 1.2 Data Collection and Preprocessing
 - Techniques for data acquisition (APIs, web scraping, databases)
 - Data cleaning and preprocessing using Pandas
 - Exploratory Data Analysis (EDA) and feature engineering
- 1.3 Descriptive Statistics and Visualization
 - Measures of central tendency and dispersion
 - Data visualization using Matplotlib, Seaborn, and Plotly
 - Dashboard creation and design principles

1.4 Inferential Statistics

- Hypothesis testing, confidence intervals, and p-values
- Regression analysis and correlation
- Advanced statistical methods and experimental design

Module 2: Programming for Data Analytics

- 2.1 Python Programming Fundamentals
 - Variables, data types, and control structures
 - Functions, modules, and error handling
 - Object-oriented programming concepts

2.2 Data Manipulation and Visualization with Python

- Pandas for data manipulation
- Data visualization libraries (Matplotlib, Seaborn, Plotly)
- Interactive visualizations and geospatial data
- 2.3 Advanced Topics in Python
 - Web scraping using BeautifulSoup and Selenium
 - Machine learning libraries (Scikit-Learn, TensorFlow, PyTorch)
 - API integration and working with JSON data

2.4 Database Management and SQL

- Relational databases and normalization
- SQL basics and advanced querying
- Connecting Python to databases for seamless integration

Module 3: Machine Learning and Predictive Analytics

- 3.1 Introduction to Machine Learning
 - Supervised learning, unsupervised learning, and reinforcement learning
 - Model evaluation, validation, and overfitting
 - Ensemble methods and model deployment considerations

3.2 Regression and Classification Models

- Linear regression, logistic regression
- Decision trees, random forests, and support vector machines
- Neural networks and deep learning fundamentals
- 3.3 Clustering and Dimensionality Reduction
 - K-means clustering, hierarchical clustering
 - Principal Component Analysis (PCA) and t-SNE
 - Anomaly detection and outlier analysis

- 3.4 Time Series Analysis and Forecasting
 - Time series data exploration and preprocessing
 - ARIMA models and forecasting techniques
 - Advanced time series models and applications

Module 4: Big Data and Advanced Technologies

- 4.1 Introduction to Big Data
 - Characteristics of big data and its challenges
 - Distributed computing frameworks (Hadoop, Spark)
 - Big data storage solutions (HDFS, S3, Google Cloud Storage)

4.2 Cloud Computing for Data Analytics

- Cloud platforms (AWS, Google Cloud, Azure)
- Setting up cloud-based data analytics environments
- Scalability, security, and cost considerations
- 4.3 Advanced Analytics with Spark
 - Spark architecture and RDDs
 - Spark SQL and DataFrame API
 - Machine learning with Spark MLlib

Module 5: Capstone Project and Industry Applications

5.1 Capstone Project

- Real-world data analytics project in collaboration with industry partners
- Project planning, execution, and presentation
- Peer review and feedback sessions
- 5.2 Industry Applications and Guest Lectures
 - Case studies from various industries (finance, healthcare, marketing, etc.)
 - Guest lectures from industry experts and data scientists
 - Emerging trends in data analytics and future directions