Linkedin

Guidance for Product Substitutions on AWS

Project Overview

This Guidance demonstrates how retailers can use Amazon OpenSearch Service, in combination with natural language processing, to create digital recommendations when needing to replace out-of-stock store products. Product names and descriptions are embedded and stored in a k-nearest neighbors (k-NN) index. When a consumer is querying for product recommendations, neighboring products are located within the k-NN index and returned to the consumer. The relevance of returned products can increase by using the optional category and price-based filters. 

To know more about this project connect with us

Guidance for Product Substitutions on AWS