This Guidance demonstrates how retailers can use Amazon OpenSearch Service, in combination with natural language processing, to create digital recommendations when needing to replace out-of-stock store products. Product names and descriptions are embedded and stored in a k-nearest neighbors (k-NN) index. When a consumer is querying for product recommendations, neighboring products are located within the k-NN index and returned to the consumer. The relevance of returned products can increase by using the optional category and price-based filters.